Achieving super-linear performance in parallel multi-objective evolutionary algorithms by means of cooperative coevolution

نویسندگان

  • Bernabé Dorronsoro
  • Grégoire Danoy
  • Antonio J. Nebro
  • Pascal Bouvry
چکیده

This article introduces three new multi-objective cooperative coevolutionary variants of three state-ofthe-art multi-objective evolutionary algorithms, namely, Non-dominated Sorting Genetic Algorithm II (NSGA-II), Strength Pareto Evolutionary Algorithm 2 (SPEA2) and Multi-objective Cellular Genetic Algorithm (MOCell). In such a coevolutionary architecture, the population is split into several subpopulations or islands, each of them being in charge of optimizing a subset of the global solution by using the original multi-objective algorithm. Evaluation of complete solutions is achieved through cooperation, i.e., all subpopulations share a subset of their current partial solutions. Our purpose is to study how the performance of the cooperative coevolutionary multi-objective approaches can be drastically increased with respect to their corresponding original versions. This is specially interesting for solving complex problems involving a large number of variables, since the problem decomposition performed by the model at the island level allows for much faster executions (the number of variables to handle in every island is divided by the number of islands). We conduct a study on a real-world problem related to grid computing, the bi-objective robust scheduling problem of independent tasks. The goal in this problem is to minimize makespan (i.e., the time when the latest machine finishes its assigned tasks) and to maximize the robustness of the schedule (i.e., its tolerance to unexpected changes on the estimated time to complete the tasks). We propose a parallel, multithreaded implementation of the coevolutionary algorithms and we have analyzed the results obtained in terms of both the quality of the Pareto front approximations yielded by the techniques as well as the resulting speedups when running them on a multicore machine. & 2011 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Pareto Optimal Solutions of Multi objective Optimal Control Problems by Evolutionary Algorithms

In this paper an approach based on evolutionary algorithms to find Pareto optimal pair of state and control for multi-objective optimal control problems (MOOCP)'s is introduced‎. ‎In this approach‎, ‎first a discretized form of the time-control space is considered and then‎, ‎a piecewise linear control and a piecewise linear trajectory are obtained from the discretized time-control space using ...

متن کامل

A Parallel Multi-Objective Cooperative Coevolutionary Algorithm for Optimising Small-World Properties in VANETs

Cooperative coevolutionary evolutionary algorithms differ from standard evolutionary algorithms’ architecture in that the population is split into subpopulations, each of them optimising only a sub-vector of the global solution vector. All subpopulations cooperate by broadcasting their local partial solutions such that each subpopulation can evaluate complete solutions. Cooperative coevolution ...

متن کامل

Optimising Small-World Properties in VANETs with a Parallel Multi-Objective Coevolutionary Algorithm

Cooperative coevolutionary evolutionary algorithms differ from standard evolutionary algorithms architecture in that the population is split into subpopulations, each of them optimising only a subvector of the global solution vector. All subpopulations cooperate by broadcasting their local partial solutions such that each subpopulation can evaluate complete solutions. Cooperative coevolution ha...

متن کامل

A Hybrid MOEA/D-TS for Solving Multi-Objective Problems

In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...

متن کامل

SECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS

In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computers & OR

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2013